
12/20/12 vm‑design.txt

1/8file:///Users/a2deh/Downloads/SimsStuff/SimsDocuments/vm‑design.txt

Tree Language Virtual Machine Design Document

Scopes

 Overview

 Global
 Code and data shared by all objects in the game,
 like utilities and environmental parameters,
 and the objects that model the world.
 This includes common utility functions and
 the simulator global state, language and user
 interface data, as well as the world grids,
 house, family, and object module.

 Semi Global
 Code and data shared by related objects like chairs,
 doors, and people. This includes utilities used to
 implement common protocols like sitting down and walking
 through.

 Private
 Code and data stored in the objects file, shared by
 all instances of other objects in the same file.
 This includes actions and tree tables particular to
 one object, or the parts of a multi tile object in
 the same file.

 Object
 Data stored with each instance of an object that's
 instantiated in the world, which is saved in the
 scenario file. This includes normal objects, as
 well as people (who have even more state). Every
 object has a stack, temporary variables, attributes,
 simulation data, object definition, globally unique
 id, semi global file, private file, relationship
 matrix, location, and other properties.

 Local Stack
 Each object has a stack containing state that is
 pushed and popped between calls to trees.
 Each invocation of a tree has its own stack frame,
 which contains the context, program counter, stack
 object target id, interrupt flag, and stack variables.

 Details

 Global
 There is a global resource file that contains data
 shared by all objects, called the "Language File".

 There is another global resource file that
 contains the application's users interface resources
 and other data, called the "GUI File".

 The simulator maintains global state accessable to
 tree programs in a segment called the "Sim Globals",
 as well as other state like the funds, running state,
 and tick count.

 The Sim Globals include the hour, day of month,
 temperature, weather, funds, minute, second,
 month, year, current family, and current house.
 Trees can read and write them directly.

12/20/12 vm‑design.txt

2/8file:///Users/a2deh/Downloads/SimsStuff/SimsDocuments/vm‑design.txt

 The simulator also maintains a great deal of state
 in the World grids, House object, Family object,
 and Object Module.

 The World grids model the terrain altitude, ground
 cover, floor pattern, room numbers, walls, doors,
 windows, and object placement lists.

 The House object maintains the family, object module,
 world grids, simulator, save file name, and house
 number.

 The Family object contains a list of people, the
 family name, family number, and house number.

 The Object Module keeps track of the error file,
 language file, 3d device, meshes, and all objects
 in the world.

 Semi Global
 Each object can have an optional Semi Global file,
 that is shared with other similar objects in different
 files. These include common utilities that implement
 shared protocols between objects like generic people
 behaviors, sitting down in chairs, walking through
 doors, etc.

 Private
 All instances of a particular object share private
 data from the object's file. One file can contain
 several related objects (represented by "Object
 Selectors"), like the different parts of a multi
 tile object.

 An "Object Selector" refers to code and data that
 belongs to the class of objects, not individual
 instance data. A file can contain several related
 object selectors, but usually only has one.
 An object selector refers to the private file from
 which it came, a semi global file that is shared
 with other object selectors, a renderer, a behavior,
 a file name, an object name, an animation table,
 a header, a globally unique id, a definition resource
 id, and a unique index that distinguishes it from
 other object selectors loaded into the current runtime.

 An object file can contain object definitions,
 trees, tree tables, icons, draw groups, animations,
 suites, and sounds.

 An object definition keeps track of the graphics,
 behaviors, tree tables, personality, type, animation
 table, globally unique id, price, slots, flags, and
 other properties of a class of object. An object
 definition includes the following state of 22 numbers.
 version
 stackSize
 baseGraphic
 numGraphics
 initBhav
 toolbarPict
 treeTableID
 personalityID
 type
 kUnknown, kFood, kPerson, kContainer,
 kFurniture, kStructure, kAnimal, kSimType,

12/20/12 vm‑design.txt

3/8file:///Users/a2deh/Downloads/SimsStuff/SimsDocuments/vm‑design.txt

 kDoor, kMouseType, kUserAvatar, kInternal
 masterID
 subIndex
 dialogID
 animTableID
 guid
 disabled
 portalTreeID
 price
 bodyStringsID
 slotsID
 headLinesID
 eventTreeID
 selfModTreeTableID

 Object
 Each instance of an object has its own private object
 state, that is saved in the scenario file.
 Types of object include inanimate objects as well
 as people, who have more state than inanimate objects.

 Each object has a reference to an object definition,
 that is shared by all objects of the same class,
 and comes from the object's private file.
 It defines the class type and behavior of all
 instances of that class.

 Every object has a stack for local storage of nested
 tree parameters, as well as temporary variables,
 numeric attributes, magic simulation data, a globally
 unique id, an object definition, a relationship matrix,
 a list of slots, as well as other miscellaneous and
 indirect properties.

 The stack is pushed and popped between calls to
 trees, and is described below.

 The 8 temporary variables are shared between calls
 to trees, and can be used to pass parameters.

 The 8 numeric attributes can be used by tree tables
 to model the object's state, and are not touched
 by the simulator.

 The magic simulation data is maintained and referenced
 by the simulator and the user interface, and can be
 read and changed by the tree tables. The simulation
 data includes the following state of 36 numbers.
 kGraphicNumber
 kDirection
 kColor1
 kColor2
 kPattern
 kHeight
 kRouteID
 kIndirectID
 kFlagField1
 kCanContain
 kCanWalkOver
 kCanWalk
 kPreviouslyFound
 kOccupied
 kNotified
 kRoutingInterruptable
 kAnimID
 kAnimFrame

12/20/12 vm‑design.txt

4/8file:///Users/a2deh/Downloads/SimsStuff/SimsDocuments/vm‑design.txt

 kObjectID
 kOldTargetID
 kWallPlacementFlags
 kSlotID
 kFamilyNumber
 kUnused5
 kCounter1 = kTrapCount = kRoomCompDelay
 kAge
 kGender
 kTreeTableEntry
 kSearchRadius
 kSpeed
 kRotationSpeed
 kCounter2 kRouteCount
 kUseCount
 kContainerID
 kWeight
 kSupportWeight
 kRoom
 kRoomPlacement
 kRmPlAnyRoom
 kRmPlOutsideOnly
 kRmPlInsideOnly
 kUnused2
 kUnused3
 kUnused4
 kHidden

 The relationship matrix is two dimensionally indexed
 by the guids of other object and relationship identifiers,
 and it stores numeric values used by the trees to keep
 track of how individual objects relate to other
 individual objects and classes of objects.

 Each object can have a list of slots enumerated in
 the object definition. An object's slots define
 relative locations, so each object may have other
 objects contained in its own slots.
 Slots are used for containing other objects, sitting
 on or entering other objects, carrying an object by
 a registration point, and placing headlines.

 Local Stack
 Each object has a stack of a fixed depth, that is
 pushed and popped between calls to trees, to keep
 track of nested tree invocations and local storage.
 Each stack frame contains the context a program
 counter context (consisting of a behavior pointer,
 tree id, and node number), a target object id (an
 implicit object reference like "this" in C++,
 that the tree program can change), an interrupt
 flag (used to restart blocked primitives),
 and four short local stack variables.

 When a tree is called as a subroutine, the local stack
 variables are initialized from either the constant
 parameters of the call, or the temporary variables.
 If the constant parameters are the default value of
 -1, -1, -1, -1, then the first four temp variables
 are copied into the stack frame's locals instead.

Person
 A person is a subclass of an object, that contains additional
 state and behavior. Each person has an XVitaBoy reference,
 a Personality, an XAnimator, a set of Motives, an Action Queue,
 a Headline, a Skeleton Name, a Body Suit Name, a Head Suit Name,

12/20/12 vm‑design.txt

5/8file:///Users/a2deh/Downloads/SimsStuff/SimsDocuments/vm‑design.txt

 some standard Slots, and a set of Actions.

 The motives consist of the following numeric properties,
 ranging from -50 to 50.
 HappyLife, HappyWeek, HappyDay, HappyNow
 Physical, Energy, Comfort, Hunger, Hygiene, Bladder
 Mental, Alertness, Stress, Environment, Social, Entertained

 The Personality is a set of numbers that control how an individual's
 motives interact with the environment, but it's not used yet.

 The Action Queue is a list of pending actions, so the user can
 click ahead to get a person to do several things in a row. There
 is an issue that you may not be able to select an action until
 its preconditions have been satisfied, so you may have to wait
 before being able to click ahead. Another problem is that you
 can click ahead an action that might be disabled by the time
 it's executed. This needs to be worked out.

 The XAnimator and XVitaBoy objects wrap the lower level
 graphics and VitaBoy objects, and implement higher level
 behavior like animation channels and walking behaviors.

 The Skeleton, Body, and Head names identify the VitaBoy
 resources to use for the animated character. The person
 can have one of the following heads: Default, Happy, Sad,
 Mad, Sleep.

 People have the following standard slots: Right hand, Headline.

 Each person has a headline slot where thought balloons and
 emotional icons are displayed. These can come from the global
 file or the person's private or semi global file.

 Motive though balloon icons include the following:
 None, Energy, Hunger, Comfort, Hygiene, Bladder,
 Stress, Alertness, Entertained, Social, Environment

 Headline icons include the following:
 None, Stress, Smell, Hurt, Drunk,
 Love, Idea, Suprise, Hate

 People have the following standard feedback animations:
 Stand, Hunger, Sleepy, Wired,
 Bladder, Mad, Entertained

 Each person also have a standard set of personal stylized
 walking and standing animations.

Trees
 A tree is a program that controls the behavior of an
 object or person. Trees are actually hierarchically
 nested directed graphs of nodes. Each tree contains a
 graph of nodes, strung together into a spaghetti state
 machine.

 A node can pop the stack and return true or false
 from the tree, or it can contain a reference to a
 primitive or a tree, as well as four numeric parameters,
 and true and false transitions that point to other nodes
 in the same tree.

 When a node pops the stack returning true or false,
 the interpreter returns to the calling tree and follows
 the corresponding true or false transition.

12/20/12 vm‑design.txt

6/8file:///Users/a2deh/Downloads/SimsStuff/SimsDocuments/vm‑design.txt

 When a node refers to a primitive, it is called with
 the parameters as arguments, and it can refer to and
 modify the state of the virtual machine and the world.

 When a node refers to another tree, it is called
 recursively by pushing another stack frame, and
 passing arguments (from either the parameters
 or the temporary variables).

 The result of a call to a tree or a primitive may return
 true or false, which determines the next node in the tree
 to transition to and execute next. A node may have just
 one transition, or both a true and a false transition.
 Transitions refer to nodes in the same tree.

 There are several types of trees, including Generic, Portal,
 Check, Container, and Switch. Generic trees are the most
 common, and when they are called, execution begins with the
 first node in the tree (which is displayed with a green
 border around it). Switch trees take an argument, and start
 execution with the node indexed by that parameter, so if
 the parameters is 0, the first node is executed, and so on.
 Other tree types are not so common or useful to tree
 programmers.

 Each node of a tree has an optional comment, where the
 programmer should describe its meaning in English.
 Trees also have a list of comment windows for overall
 documentation and rationalization.

 The execution of a tree or a primitive can cause an error,
 which is signaled with a debugger window. There are problems
 with debugging errors that happen in many circumstances,
 like check trees, that need to be worked out.

 A node can have a breakpoint set for debugging purposes.
 This isn't actually stored in the node, and has some
 problems and restrictions that need to be worked out.

Tree Tables
 Tree tables are used to define a set of actions with
 precondition tests, that can advertise that they satisfy
 various motives (although they don't actually have to
 satisfy the motives they advertise). The menus that pop up
 on objects are defined by tree tables. A tree table consists
 of a list of tree table entries. Each entry has an optional
 check tree id, which is executed as a precondition to tell
 if the entry is selectable. If the check tree returns true,
 the corresponding menu item is enabled, otherwise it's
 disabled. Each entry has an action tree id that is
 executed if the precondition returns true and you select
 that menu item. Each entry also has a set of motive
 advertisements, that default to 0. If an advertisement
 is non-zero, it means that the tree table entry might
 satisfy the corresponding motive by the given amount.
 Tree table entry motive advertisements combined with
 check tree preconditions are used together to implement
 chaining motives, so a person who's hungry goes to the
 fridge to get food, cooks the food, puts it on the table,
 and eats it, because the advertisements lead him through
 the task like a carrot.

Primitives
 Here is a list of the currently implemented primitives.
 kIdle
 kSearch

12/20/12 vm‑design.txt

7/8file:///Users/a2deh/Downloads/SimsStuff/SimsDocuments/vm‑design.txt

 kAttr
 kGoto
 kGrab
 kDrop
 kStartSearch
 kUpdate
 kRandom
 kDeltaMove
 kAnimate
 kDistanceTo
 kDirectionTo
 kPushAction
 kAlert
 kTreeBreak
 kNeedExpr
 kIdleForInput
 kKillObj
 kFindTreeNew
 kUnusedPrim2
 kUnusedPrim3
 kUnusedPrim4
 kPlaySound
 kRelVar
 kSpendMoney
 kAnimateOneLoop
 kGotoRel
 kSpeak
 kTreeSearch
 kGosubTree
 kGetNextObject
 kConstructMaxTree
 kFind5WorstMotives
 kIncrementNeed
 kGetMotive
 kShowDialog
 kGetFrontObject
 kRunTypeTree
 kShowHide
 kSetHeadline
 kSetThoughtBalloon
 kCreateObject
 kDropOnto
 kAnimateNew

Primitive Parameters
 Data Owners
 Many primitives allow you to select different argument
 address modes for their parameters, called data owners.
 These include the following.
 kMyself, // my own object's attribute block
 kTreeParam, // the object of this behavior
tree's attr block
 kTargetObj, // the target object's attr block
 kMyData, // my own object's data
 kTreeParamData, // the tree's object's data
 kTargetObjData,
 kSimGlobals, // simulation globals
 kImmediate, // just plain old data
 kTempVars, // temporaries of my object
(referenced by number)
 kStackVars, // stack parameters
 kStackObject, // the object on the stack at any level
 kTempTempVars, // temporaries of my object (referenced by
another temporary)
 kStackObjTreeTableAdvertisement, // the array of floats in
stackObject->GetTreeTable()->GetEntry(fData[kTreeTableEntry]);

12/20/12 vm‑design.txt

8/8file:///Users/a2deh/Downloads/SimsStuff/SimsDocuments/vm‑design.txt

 kTreeParamTemps,
 kPersonMotive,
 kStackObjectMotive, // the literal
motive of stack object
 kStackObjectSlot,
 kStackObjectMotiveOfTemp, // the motive of stack
object indexed by a temp

ResFiles
 There are two global resource files:
 Gui file
 Language file

 There are many different classes of resource file:
 iResFile
 FlatResFile
 IFFResFile
 MacResFile
 MultiResFile
 ResolveResFile
 NResFile
 SeqResFile
 ObjResFile
 ChainResFile
 Private
 Semi global
 Global

