
Confidential and Proprietary Information DRAFT 4 - Page 1
May not be reproduced or distributed without the express permission of Maxis, Inc. Printed 12/20/12, 11:57 AM

Chapter 9 – Architecture & Landscape, DRAFT 4

Jefferson Technical Design
Eric Bowman, October 15, 1997

9. ARCHITECTURE & LANDSCAPE..2

9.1 DATA STRUCTURES...2
9.1.1 Terrain...2
9.1.2 Water ...4
9.1.3 Walls ..4
9.1.4 Floors ..8
9.1.5 Doors ...9
9.1.6 Windows ..10
9.1.7 Levels...10
9.1.8 Stairs..11
9.1.9 Roofs ..12
9.1.10 Rooms ..12

9.2 EDITING...13
9.2.1 Unified Architecture Tool Model...13
9.2.2 Terrain and Ground Cover..14
9.2.3 Walls ..15
9.2.4 Floors ..15
9.2.5 Doors ...16
9.2.6 Windows ..17
9.2.7 House Interior vs. Exterior..17
9.2.8 Levels...18
9.2.9 Stairs..18
9.2.10 Roofs ..19
9.2.11 Gardens, Trees, and Flora ..19
9.2.12 Fences, Rock Walls, and Railings ...19
9.2.13 Pools & Hot Tubs ..20
9.2.14 Streets, Curbs and Alleys...20
9.2.15 Driveways & Sidewalks...20
9.2.16 Grass ...20
9.2.17 Water ...20
9.2.18 Undo Mechanism...20

9.3 VIEWS ...23
9.3.1 Interior View..23
9.3.2 Exterior View...23
9.3.3 Thumbnail View...24

9.4 FENG SHUI ANALYSIS ...25

Confidential and Proprietary Information DRAFT 4 - Page 2
May not be reproduced or distributed without the express permission of Maxis, Inc. Printed 12/20/12, 11:57 AM

9. Architecture & Landscape
This chapter describes the architecture & landscape subsystem for Jefferson.

The goals of the architecture subsystem are:

• Allow the player to construct and edit a wide variety of houses and yards.

• Keep the user interface straightforward, easy to use, and out of the way.

• Provide some amount of “undoability” when editing a house.

• Support houses of up to 3 stories.

• Support interior and exterior views of the house.

• Include a mechanism to keep active characters in view.

• Support “thumbnail” views of a house for a neighborhood view.

9.1 Data Structures
This section describes the data structures used to represent the house and landscape.

The goals of the architecture data structures are to:

• provide a compact, non-ambiguous representation of the architectural data in a house (and its yard).

• be suitable for encapsulation, so that down-stream changes to data structures have minimal and known
impact.

• be rich enough to support fairly arbitrary architectural arrangments, so that restrictions are manifest in
code, not data structures limitations.

9.1.1 Terrain
The terrain is stored using an altitude layer and a ground layer. The altitude layer allocates 4 bytes per tile,
each byte containing the altitude of one corner of the tile (as a signed, 8-bit integer value). The ground
layer allocates 1 byte per tile. Currently this byte controls the color of the tile (from completely tan through
completely green).

9.1.1.1 Altitude
The altitudes for a tile are stored in a PackedAlt structure, which is defined:

typedef struct {
 SInt8 left, top, right, bottom;
} PackedAlt;

The left, top, right, and bottom members hold the altitudes for the left, top, right, and bottom corners,
respectively, of the tile (in either a world tile or view tile representation, depending on the context; see
Chapter 2).

Altitude is accessed from the cFixedWorld or cRotatableWorld objects using these member functions:

PackedAlt cFixedWorld::GetPackedAlt(Int x,Int y);
PackedAlt cRotatableWorld::GetPackedAlt(Int x,Int y);
UInt8 cFixedWorld::GetPointAlt(TilePt y);
UInt8 cFixedWorld::GetPointAlt(Int x,Int y);

TBD TODO: Unify these member functions to use FTilePt (only?) to incorporate multiple levels.

The GetPackedAlt acccessors return the PackedAlt data, at the tile coordinates specified, in view tile or
world tile coordinates, depending on whether the cRotatableWorld or cFixedWorld object is used,
respectively.

Confidential and Proprietary Information DRAFT 4 - Page 3
May not be reproduced or distributed without the express permission of Maxis, Inc. Printed 12/20/12, 11:57 AM

The GetPointAlt functions return the altitude of the top of the specified tile. The meaning of “top” depends
on whether the cRotateableWorld or cFixedWorld object is used. Note that the GetPointAlt functions
return the incorrect type (UInt8 instead of SInt8). This is a bug. TODO: fix it.

The altitude layer may be modified through these member functions of the cFixedWorld and
cRotatableWorld objects:

void cRotatableWorld::PutPackedAlt(Int x, Int y, PackedAlt
newAlt);
void cFixedWorld::PutPointAlt(TilePt pt, UInt8 newAlt);
void cFixedWorld::PutPointAlt(Int x, Int y, UInt8 newAlt);

TBD TODO: Unify these member functions to use FTilePt (only?) to incorporate multiple levels.

The cRotatableWorld::PutPackedAlt function assumes its arguments are in view tile coordinates, and that
the directions in the PackedAlt structure are also in the view tile representation. It converts both the
coordinates and the PackedAlt struct to world tile coordinates before storing it in the altitude layer.

The cFixedWorld::PutPointAlt member functions accept the wrong type (UInt8 instead of SInt8). This
is a bug. TODO: fix it.

TBD: The units of altitude are currently defined with respect to the pixel size of a tile(and end up being
about 0.61 feet/unit). This will change so that a unit of altitude is defined to be 1/8 the wall height. This
will simplify various problems involving shearing and walls. In particular, a single wall tile, 1/8 the size of
a normal wall, could be used (stacked) to fill in gaps, and wallpapered appropriately.

TBD: Wall sizes will be defined in terms of pixels, not world coordinates. See 9.2.3.1. The world
coordinate altitude will be derived from the pixel altitude, and used wherever world coordinates are needed
(character animation, for example).Note that changing the terrain altitude units will probably break the
terrain renderer. Wall heights will be 224 pixels at maximum zoom, 112 pixels at medium zoom, and 56
pixels at minimum zoom. Thus one unit of altitude will be 28 pixels at maximum zoom, 14 pixels at
medium zoom, and 7 pixels at minimum zoom.

9.1.1.2 Ground
Each tile has an 8-bit “ground” value. Presently this value is used to determine the color of the terrain (a
ramp between green and tan), and only about 3 bits worth of information is actually stored per tile (tan, tan
with a little green, green with a little tan, green, dark green).

The ground layer is accessed using the following member functions (of both cFixedWorld and
cRotatableWorld):

UInt8 GetGround(TilePt inTile);
UInt8 GetGround(Int x,Int y);
void SetGround(TilePt inTile,UInt8 inGround);
void SetGround(Int x, Int y, UInt8 inGround);

TBD TODO: Unify these member functions to use FTilePt (only?) to incorporate multiple levels.

Note: When a tile has a floor value, the ground layer isn’t used. We could conceivably use the ground
layer for other information when the tile has a floor. Under the current implementation, a tile remembers
its ground value when a floor is placed, and reverts to it when a floor is removed. We could probably
sacrifice this behavior; for instance, when floor is removed (and the ground layer at that tile reverts to being
the ground layer), it could take on a specific “fresh dirt” ground layer value. Another pitfall is that this byte
wouldn’t exist for each level, only the ground floor level (see “Levels”, below). Note also that a non-level
tile has no floor value (subject to TBD), so the floor layer could be used for other purposes on uneven
terrain.

TBD: What do we want to use the ground layer for, exactly? Grass? Dirt? Sidewalk? Streets? Alleys?
Driveways? Curbs? Could some of these be floor (forcing them flat), and some ground, or all ground?

Confidential and Proprietary Information DRAFT 4 - Page 4
May not be reproduced or distributed without the express permission of Maxis, Inc. Printed 12/20/12, 11:57 AM

TBD: Are we keeping the current terrain renderer?

9.1.2 Water
A “water layer” will be added, 8 bits per tile. It will be accessed through the world objects.

The water layer will be defined only for the ground layer.

TBD: The water algorithm.

9.1.3 Walls
The primary goal of the new wall design is to:

• Allow maximally flexible wall placement and decoration, so constraints and limitations are imposed by
the code, not the data structures.

9.1.3.1 Wall Data
A wall segment to be drawn is determined by 2 bytes, a style byte and a pattern byte. The actual sprite
which gets drawn is uniquely determined by the style byte, the pattern byte, a wall-segment bit at the
particular tile, and the rotation of the world being drawn. Note that for a given wall segment bit, the style
byte effectively determines the z-buffer for the wall at that point, and the pattern byte effectively
determines which pixels get drawn on the z-mask.

For "orthogonal" (non-diagonal) wall segments, only one of the bordering tiles needs to hold the style byte
for the wall segment, but each bordering tile needs to contain the pattern byte for its side of the wall.

For diagonal wall segments, a single style byte and two pattern bytes per wall segment are needed per
diagonal segment, per tile.

9.1.3.2 Wall-Segment Bits
Each tile will contain a bitmask indicating which wall segments exist at that tile. The possible segments
are:

• kTopLeft = 1

• kTopRight = 2

• kBottomLeft = 4

• kBottomRight = 8

• kHorizDiag = 16

• kVertDiag = 32

Confidential and Proprietary Information DRAFT 4 - Page 5
May not be reproduced or distributed without the express permission of Maxis, Inc. Printed 12/20/12, 11:57 AM

Assorted Wall-Segment Bits and their Interpretation (Fixed World)

9.1.3.3 Per-Tile Wall Data
Each tile will hold

• 1 byte of wall-segment mask (from the above list)

• 4 bits of “wall shear placement” data (enough to top left & top right wall segments)

• 4 bytes of style info, enough for 4 wall segments (kTopLeft, kTopRight, kHorizDiag and
kVertDiag).

• 8 bytes of pattern info, enough for 4 one-sided segments (kTopLeft, kTopRight, kBottomLeft and
kBottomRight) and 2 two-sided segments (kHorizDiag and kVertDiag).

This comes out to at most 14 bytes, or 56.0 kb per 64x64 tile array. There will be one such array per level
of the house, though upper levels may require less memory.

Here’s the public interface for a C++ class to encapsulate the per-tile wall data:

Confidential and Proprietary Information DRAFT 4 - Page 6
May not be reproduced or distributed without the express permission of Maxis, Inc. Printed 12/20/12, 11:57 AM

class Wall {
public:
 enum Segment {

kNoWalls = 0,
 kTopLeft = 1,
 kTopRight = 2,
 kBottomLeft = 4,
 kBottomRight = 8,
 kHorizDiag = 16,
 kVertDiag = 32,
 kAllWalls = 255 };

 enum DiagonalSideSelector {
 kNotSpecified,
 kLeft,
 kTop,
 kRight,
 kBottom };

 enum ShearPlacement { kUpper = 1, kLower = 2,kBoth = 3 };

// we use ints in the interface to facilitate better
optimization.
 typedef int Style;
 typedef int Pattern;

public:
 Wall(); // no walls; empty styles; empty patterns
 Wall(const Wall &); // copy constructor
 ~Wall(); // not virtual and trivial
 Wall &operator=(const Wall &);

 // accessors: patterns, styles, walls
 Pattern GetPattern(Segment inSeg,
DiagonalSideSelector inSel=kNotSpecified) const;
 Style GetStyle(Segment inSeg) const;
 BOOL HasWall(Segment inSeg) const;
 BOOL CanAdd(Segment inSeg) const;
 ShearPlacement GetPlacement(Segment inSeg) const;

 // modifiers: patterns, styles, walls
 Segment SetPattern(Pattern inPattern, Segment inSeg,

DiagonalSideSelector inSel=kNotSpecified);
 Segment SetStyle(Style inStyle, Segment inSeg);
 Segment AddWall(Segment inSeg);
 void RemoveWall(Segment inSeg);
 Segment SetPlacment(ShearPlacement inPlcmnt, Segment
inSeg);

 // for iterating through all walls on a tile
 Segment First() const;
 Segment Next(Segment inPrevious) const;
};

Confidential and Proprietary Information DRAFT 4 - Page 7
May not be reproduced or distributed without the express permission of Maxis, Inc. Printed 12/20/12, 11:57 AM

The wall data will no longer be accessed through the current interface; access for wall data will go through
the Wall public interface. Accessors to a Wall object will be added to cFixedWorld and cRotatableWorld:

Wall &GetWall(const FTilePt &inTile);
const Wall &GetWall(const FTilePt &inTile) const;

The old wall style- and pattern-accessor member functions of cFixedWorld and cRotatableWorld will be
removed.

It’s worth nothing that a Wall object is not aware of any other Wall objects. For instance, the pattern for
one side of a wall is often stored in a different tile (and hence different Wall object) than the other. Thus
there will be another layer above the Wall object layer that encapsulates this distribution. The Wall object
itself will be well-instrumented with debug code to ensure it is used consistently.

9.1.3.4 Stale House Files
TBD: Changing the implementation of the wall data will require either regenerating, statically repairing, or
dynamically repairing our current saved game files. If the map portion of the save file contains a version, it
should be relatively straightforward to "patch" an old-style game file when it's loaded.

9.1.3.5 Noted Pathologies
The only restriction on walls will be that a diagonal wall on a tile excludes any other wall segment on that
tile.

Note: There is also some question regarding to which room a particular tile belongs when it has a diagonal
wall across it. We have stipulated that only doors, windows, and picture objects may be placed on tiles
with diagonal walls.

9.1.3.6 Wall Sprites
Wall sprites will be encoded and stored differently than object sprites. Each wall style will correspond to a
z-mask for that style, and each pattern will correspond to a sprite.
The sprite will be designed to fit perfectly on a wall segment with no holes punched in it; a given style (z-
mask) can be used to punch holes in the “canonical” wall segment for windows, door, etc. The z-mask will
encode whether a given pixel is transparent or not only; the actual z-buffer values for walls will be
computed from lookup tables at blit time. This technique will allow massive compression of wall z-buffers
and maximum reuse of the wall patterns (“wallpaper”).

“Normal-style” wall segments - All Other Styles Are Made By Punching Holes In It

Confidential and Proprietary Information DRAFT 4 - Page 8
May not be reproduced or distributed without the express permission of Maxis, Inc. Printed 12/20/12, 11:57 AM

9.1.3.7 Wall Thickness
TBD: Walls won’t have thickness greater than 1 pixel. There are too many difficult issues (joining at the
seams, handling shear, etc.).

Patching Up Seams With Thick Walls

9.1.3.8 Walls and Shear
When placing a wall between two tiles separated by shear, the wall may be placed on the upper tile or the
lower tile. Laying 2 separate walls will allow walls to be placed on both the upper and lower tiles. These
walls will share style and pattern information, and both walls will be drawn (front to back?).

Whether a given wall is defined on the upper, lower, or both tiles can be determined by querying the
relevant Wall object(s), using the GetPlacement/SetPlacement member functions.

9.1.4 Floors
The floor is stored using a floor layer consisting of 1 byte per tile. Floor data is accessed and modified
using the following functions:

UInt8 cFixedWorld::GetFloor(Int x,Int y);
UInt8 cFixedWorld::GetFloor(TilePt inTile);
void cFixedWorld::SetFloor(Int x,Int y,UInt8 inFloor);
void cFixedWorld::SetFloor(TilePt inTile,UInt8 inFloor);

and likewise for the cRotableWorld object.

TBD TODO: Unify these member functions to use FTilePt (only?) to incorporate multiple levels.

There won’t be “floor palettes;” we will make do with 255 distinct floor values.

A diagonal wall separates a tile into two regions. The user may place different floor on either side of the
wall. The extra floor byte will be placed in an unused portion of the Wall data structure (since much of it
will be unused when there is a diagonal wall present). This detail will be encapsulated, however, behind
member functions of cFixedWorld and cRotatableWorld. In this case, the following convention will be
used. GetFloor and SetFloor will operate on the left or top half of the floor (in world tile representation),
and these functions will be used to operate on the right or bottom half:

UInt8 cFixedWorld::GetFloorRB(const FTilePt &inPt);
void cFixedWorld::SetFloorRB(const FTilePt &inPt,UInt8 inFloor);

Confidential and Proprietary Information DRAFT 4 - Page 9
May not be reproduced or distributed without the express permission of Maxis, Inc. Printed 12/20/12, 11:57 AM

A development-time assert will be triggered if GetFloorRB or SetFloorRB are called when there is no
diagonal wall on the tile.

A floor value of 0 means “no floor.”

9.1.5 Doors
A door in the world is represented as both a specific wall style (kDoor), and an object spanning both sides
of the door.

The door object will provide z-sprites for both sides of the door. The door object (and not the layer) will
maintain any state information about how the door is oriented (that is, which direction the door swings,
etc.). This distinction is important; rotating the door as a generic multi-tile object will not provide the
desired behavior. The door object will have an interface that the door tool can use to tell it to change its
orientation.

Doors may be placed through any wall segment, including corners and diagonal wall segments.

TBD: More than one door object may be on a given tile. This is to support corner pieces with door in each
of the two wall segments. Exactly 1 door may swing on to a particular door tile, however. The door tool
code will prevent a door from being placed if it is not positioned so that one of the tiles it occupies doesn’t
have a door swinging on to it.

A Door Swinging Open Stays On One of Its Tiles

Four Possible Door Orientations

Confidential and Proprietary Information DRAFT 4 - Page 10
May not be reproduced or distributed without the express permission of Maxis, Inc. Printed 12/20/12, 11:57 AM

9.1.5.1 Doors Through Diagonal Walls
Diagonal walls pose some problems. We will minimize these problems by making the following
restrictions:

• Doors through diagonals occupy 3 tiles, instead of the usual 2.

• Windows through diagonal walls occupy the same tile-shape as doors.

• Pictures, doors, and windows are the only objects which may be placed on the same tile as a diagonal
wall. TBD: What room is the picture in, and does it matter?

The primary motivation for these restrictions is the difficulty of assigning a single room number to a tile
that is subdivided by a diagonal wall.

• Regardless of whether doors-through-diagonal walls are 1 tile or 3, double doors through diagonal
walls will be a single 2x2 object (which will share sprites with the 1-door case).

Diagonal French Doors Opening Are Restricted To Their Tiles

9.1.6 Windows
Currently, a window is represented as a specific wall style (kWindow) only.

A window will actually be a door object, or “portal.” This will facilitate:

• different sprites for different windows

• behavior trees in windows, so people can wash them, open then, sit in the window sill, etc.

• windows as “portals” (i.e. doors) to a different room (a cat burglar could crawl through a window, for
instance).

9.1.7 Levels
“Level” is used to denote a floor or story. As in, “my room’s on the 3rd level.”

Each level will consist of:

• a floor layer

Confidential and Proprietary Information DRAFT 4 - Page 11
May not be reproduced or distributed without the express permission of Maxis, Inc. Printed 12/20/12, 11:57 AM

• a room layer

• an object layer

• a wall layer

• an altitude layer

These will be bundled into a Level object. The ground and water layers will not be duplicated for each
level.

A new field will be added to the FTilePt struct to specify which level it points to (0,1,2 for ground floor, 2nd
floor, 3rd floor). TBD: FTilePt structs will become the primary (only?) means of addressing the grid. Level
information will be accessed by querying the various world objects using a FTilePt object. The world
object will return the layer information at the level specified.

Altitude is defined in terms of levels; there will be 8 altitude units per level. Walls will also be 8 altitude
units high.

9.1.8 Stairs
Staircases currently don’t exist in the game.

Staircases will probably be implemented similarly to doors. The main difference will be that instead of
being a multi-tile object separated by a wall, a staircase will be a multi-tile object spanning two levels.

Split-level staircases will be “smart” objects which compose the correct sprites together to for a straight
staircase up the necessary height. If the height is an odd number of altitude units, then the top of the stairs
will be one unit below floor level; if the height is even, the top of the stairs will be level with the floor.

Spiral staircases will be objects not constructed from the staircase sprites, but with their own spiral-
staircase graphics and animations.

Four Sizes of Stair Sprites

3 Sizes of Landing Sprites

Confidential and Proprietary Information DRAFT 4 - Page 12
May not be reproduced or distributed without the express permission of Maxis, Inc. Printed 12/20/12, 11:57 AM

6 Full-Level Stair Objects

9.1.9 Roofs
TBD: Virtually everything about roofs.

• TBD: A roof will be represented by a single data structure.

• TBD: Roofs may have “control points” that can changed by the user to vary the shape of the roof.
These control points would control parameters in the data structure mentioned above. There might be
only a single control point, or one control point for each “wing” of a house.

• TBD: Roofs will be represented and rendered as polygons.

9.1.10 Rooms
Rooms are represented in the room layer. Each tile has an 8-bit value indicating which room the tile is in.
A flood-fill algorithm assigns each tile a value indicating in which room the tile falls every time the wall
layer changes. The room values will change to be 16-bits.

TBD: The high-bit of a room value indicates whether or not the room is inside or outside.

TBD: Tiles bisected by diagonal walls will hold a special room value indicating the tile occupies two
rooms.

See Section 2.4 .

Confidential and Proprietary Information DRAFT 4 - Page 13
May not be reproduced or distributed without the express permission of Maxis, Inc. Printed 12/20/12, 11:57 AM

9.2 Editing
The main editing functionality of the architecture system will consist of:

• Raising, lowering, and flattening terrain

• Raising and lowering individual tiles to create “shear”.

• Changing terrain type (grass, dirt, others? TBD)

• Adding and deleting straight walls and individual wall segments

• “Dragging out” (the walls for) an entire room

• Placing and deleting doors and windows

• Placing and removing floors, both tile-by-tile or an entire room at once

• “Wallpapering” (and un-wallpapering), either wall-segment by wall-segment, or an entire room

• Choosing an outside “scheme” for the house (brick, logs, etc.)

• Laying a roof on the house

• TBD: Changing some roof parameters (dragging control points)

• Adding and deleting a new level

• Adding and deleting stairs

• Adding and deleting fireplaces

• An undo mechanism for the architectural editing tools

Architecture editing is allowed only in a special “architecture mode.” No objects may be placed in this
mode except staircases and fireplaces.

9.2.1 Unified Architecture Tool Model
The architecture tools consist of:

• Terrain tools - raise, lower, and level terrain.

• Wall tool - lays individual walls and rooms, and deletes walls.

• Floor tool - lays individual floor tiles, floors an entire room, and deletes floor.

• Wallpaper tool - wallpapers individual wall segments or entire rooms, and removes wallpaper.

• Window tool - places or deletes a window.

• Door tool - places or deletes a door.

• TBD: Roof tool

• Stair tool

• TBD: Landscape tool - chooses grass, garden, sidewalk, driveway, brick, etc. (Modifies ground
values).

• “Single tile raise & lower” tool. Might also allow selecting a group of tiles, and raising or lowering all
of them. This capability will be crucial for making use of the gnarly shear effect.

• Fireplace tool

• Water tool

The architectural tools will all behave similarly. In particular, the effect of a given (mouse) tool will be
changed by various modifier keys (shift and control) in consistent ways. Generally, there will be a
“default” mode (no modifiers), a “room-oriented” mode (shift key), and a “delete” mode (control key).
There won’t be a “room-oriented delete” mode (shift+control keys).

Confidential and Proprietary Information DRAFT 4 - Page 14
May not be reproduced or distributed without the express permission of Maxis, Inc. Printed 12/20/12, 11:57 AM

Architectural Tool Default (no modifiers) Room (shift key) Delete (control key)

Terrain Raise Raises terrain Flattens terrain Lowers terrain

Terrain Lower Lowers terrain Flattens terrain Raises terrain

Terrain Level Levels terrain Levels terrain Levels terrain

Shear Tool Raises tile paintbrush
style (TBD with or
without shear)

TBD Lowers tile paintbrush
style (TBD with or
without shear)

Wall Lay straight segment Lay a room Delete a segment
(paintbrush style)

Floor Lay floor (paintbrush
style)

Floor the whole room Delete floor (paintbrush
style)

Wallpaper Paper a wall segment
(paintbrush style)

Paper a room Unpaper a wall segment

Window Place and orient a
window

Same as default Delete a window

Door Place and orient a door Same as default Delete a door

Roof TBD TBD TBD

Stair TBD TBD TBD

Landscape TBD TBD TBD

Fireplace TBD TBD TBD

Water Place water TBD Remove water

TBD Garden tool TBD TBD TBD

TBD Flora tool TBD TBD TBD

9.2.1.1 Choosing a “current style”
Most of the tools require extra parameters, like a particular floor style. For the purposes of this chapter, we
assume that some UI mechanism is in place for choosing which wall style, floor pattern, wallpaper pattern,
etc. is current. Choosing the current style will probably not be fundamentally related to how the tool itself
works, but rather involve selecting a style from a side panel.

In general, a tool assumes the “last selected” value, which is persistent during a single execution of the
game. TBD: persistent across multiple executions of the game?

9.2.2 Terrain and Ground Cover
Terrain can be raised, lowered, or flattened.

The default function will be similar to today: the user will press the mouse button and move the mouse.
The terrain under the mouse cursor will be raised using an algorithm. TODO: describe the algorithm.

When modified with the shift key, the tool will flatten terrain under the mouse cursor to the same altitude
as the tile corner nearest the mouse cursor when the mouse button was pressed. TBD: This tool will shear
to the maximum sheer amount (8 altitude units), then “bulldoze” to the maximum incline amount, then stop
levelling.

When modified with the control key, the tool will lower terrain using an algorithm similar to the current
“lower group” terrain function.

Confidential and Proprietary Information DRAFT 4 - Page 15
May not be reproduced or distributed without the express permission of Maxis, Inc. Printed 12/20/12, 11:57 AM

The shear tool will act on a single tile. It raises and lowers them equally to create shear with adjoining
tiles. The shear tool also flattens the tile it shears.

Tiles with floor or walls may not be raised, lowered, or sheared by the terrain tools. TBD: Fences and
outside walls may be placed on non-level terrain.

TBD: what should the mouse cursor look like when the terrain tool is selected?

9.2.2.1 Ground Cover
TBD: The ground layer is not yet well-defined, or how it will be edited.

9.2.3 Walls
The default function of the wall tool will be for drawing straight segments of wall. This is significantly
different that the current implementation in several ways, which allows non-straight walls to be placed with
a single click-drag-release action.

Wall placement will work similar to pie menus. The user chooses the orientation of the first wall segment
by dragging the mouse in that direction. The orientation can be changed by dragging the mouse back to
near where the mouse-down event occurred, then dragging the mouse in a different direction. Once the
mouse has moved “far enough away from” (a tunable parameter) where the mouse-down event occurred, a
straight stretch of wall can be laid.

When modified with the shift key, the wall tool will drag out a room. The room is always rectangular,
aligned with the grid (no diagonal walls); one corner of the room is located at the tile the user clicked on,
and the opposite corner of the room is located at the tile the user released the mouse on.

When modified with the control key, the wall tool will delete individual wall segments, paint-brush style.

TBD: Most walls may only be placed on flat tiles (all corners the same altitude). The exception might be
fences.

TBD: how to handle the user dragging from flat terrain to hilly terrain.

TBD: what feedback to provide the user to indicate a wall cannot be placed where the mouse cursor is.

TBD: what should the mouse cursor look like when the wall tool is selected?

9.2.3.1 Walls and Shear
Walls may be placed between sheared tiles. The wall tool snaps to the nearest vertex, allowing a wall to be
placed on the upper tile or the lower tile (or both, in separate actions). When a wall is on both the upper
and lower tile, it is drawn twice.

TBD: Walls must be adjacent to or on at least 1 tile with a floor value. Outdoor fences might be an
exception.

RED FLAG: Wall shear will require modifications to the route-planning algorithm.

9.2.4 Floors
The floor tool is used to place floor on individual tiles or entire rooms, and to delete floor (TBD: reverting
it back to dirt, or transparent floor, depending on the level). Placing floor on an individual tile is the default
behavior. The default floor tool will act like a paintbrush, not like a “drag rectangle,” which is different
from the current implementation. A floor may only be placed on a level tile.

The shift modifier floors the entire room. Only inside rooms may be floored with the shift key.TBD: what
if the room is outside?

The control modifier deletes the floor on the tile under the mouse cursor. This sets the value in the floor
layer at that tile to 0. Clicking a floor tile onto a tile with that floor already toggles between that floor tile
and no floor.

Confidential and Proprietary Information DRAFT 4 - Page 16
May not be reproduced or distributed without the express permission of Maxis, Inc. Printed 12/20/12, 11:57 AM

Floors on an upper level may only be placed adjacent to the top of a wall, or be connected to a floor
adjacent to the top of a wall. If a tile borders the “top” of several walls of different height, the floor is
placed flush with the lowest wall.

A tile with floor may not be raised or lowered. RED FLAG: This makes sense only if we use floors in the
traditional sense, and don’t extend their meaning into terrain types.

Note: Tiles with a diagonal wall can have 2 floor values. The “extra” floor value is stored in the Wall data
structure (see Floors in Section 9.1.43).

TBD: The floor cursor looks like a rectangular outline of the floor (outline or transparent), possibly with a
pointer indicating the hot spot. What does the floor cursor look like?

TBD: A fresh upper level draws transparent floor everywhere there is level defined directly below it. The
user can choose to put actual floor where there is transparent floor (or not, for atriums). Floors on upper
levels must be connected to walls or other floors on that level (or they may not be placed).

TBD: Are there architectural failure states based on floor placement on upper levels?

9.2.5 Doors
Doors can only be placed or deleted; they cannot be moved. When the door tool is selected, as the user
moves the mouse around, the actual door sprite that will appear is drawn if a door may be placed; otherwise
some visual feedback indicating that a door cannot be displayed.

There must be a wall already in place to place a door.

The shift modifier has no effect on the door tool.

The control modifier is used to delete a door. The mouse cursor must be placed over a door to delete it.

The door orientation cannot be changed while the user is dragging the mouse. The direction will change to
an allowable swinging direction automatically. Once placed, the user clicks on the door repeatedly to cycle
through the available orientations. The user can change the orientation of an existing door by trying to
place another door atop it (and click-cycling through the possible orientations).

Confidential and Proprietary Information DRAFT 4 - Page 17
May not be reproduced or distributed without the express permission of Maxis, Inc. Printed 12/20/12, 11:57 AM

The style of a door may be changed by placing a door with the new style on top of it, provided the new
door is the same style as the old door. For instance, one can not place a double-tile door over a single-tile
door without deleting the single tile door first.

A door only be placed through a wall between two tiles separated by shear if there is a wall on the upper
tile, and the door may swing onto the upper tile (which it can unless there is another object there, or another
door swings on to that tile).

TBD: A transparent sprite will be used to indicate which direction the door swings.

TBD: what should the mouse cursor look like (if it’s visible) when the door tool is visible? Is it just a
[transparent] sprite of the door that will be placed there? TBD: is a pointer necessary, or will the door
spirte be adequate? Where’s the hotspot?

9.2.5.2 Doors and Sheared Tiles
TBD: A door may only be placed in a wall separated sheared tiles if and only if:

• the wall is located on the higher of the two tiles (or both)

• The door (if it swings) may swing onto the upper tile

• One of:

• The shear is 1 altitude unit

• A stairway from the lower level to the upper level meets the upper level at the upper tile

Note This would require special-case code in the stair/door object to handle this, since a character would
walk through the door on to the stairs; this is a new concept.

9.2.6 Windows
Placing a window is similar to placing a door. Like doors, windows can be placed and deleted, but not
moved.

The shift modifier has no effect; the control modifier deletes the window (if any) under the mouse cursor.

There must be a wall already in place to place a window.

A window’s style may be changed by placing another window (of different style) over it.

The window cursor is a transparent sprite of the window. TBD: is a pointer needed? Where’s the hotspot?
TBD: a window may be placed in a wall between 2 tiles separated by shear. The window’s tree code may
have to check for this condition.

TBD: No windows will have an inside vs. outside (they’re symmetrical). This scheme would not allow
window seats.

9.2.6.1 Windows and Sheared Tiles
Windows may be placed in a wall on the upper tile of a sheared tile always. RED FLAG: This might break
the window-as-portal concept, or require special cases.

TBD: There will be a window style for “basement” windows: this is a window placed in a wall that is on
the lower tile in the case of shear, and doesn’t overlap any dig. For instance: imagine a 6-foot deep
basement with walls, and basement windows in the top 1-2 feet of the wall.

9.2.7 House Interior vs. Exterior
The user will be able to toggle between interior views and an exterior view of the house.

The exterior of the house may be decorated using a “theme.” Applying a theme to a house will choose the
pattern for all exterior walls (and possibly the exterior portion of windows and doors), a roof, and possibly
other exterior features like a chimney or shutters. TBD: The precise details of outdoor “themes.”

Confidential and Proprietary Information DRAFT 4 - Page 18
May not be reproduced or distributed without the express permission of Maxis, Inc. Printed 12/20/12, 11:57 AM

TBD: Are Interior and Exterior views well-defined? It might be as simple as cutaway or not.

9.2.8 Levels
TBD: Additional levels are added using some variant of the floor tool. Floor on an upper level may be
added “in relation to” walls placed on the lower level. “Floating” floor tiles are not allowed, so an upper
level’s floors must be added starting at a tile above a tile with a wall.

TBD: Architectural failure states may occur if floor is extended out from a wall without adequate support.

TBD: How does the user indicate that the floor being added is for a new level, rather than the terrain
“behind it?”

9.2.9 Stairs
Stairs are objects, with z-sprites. A staircase is a multi-tile, and the C++ object inherits from cXDoor. In
most respects a stair object is a door, in that it is used to take a person from one room to another. Stairs
may be placed in architecture mode.

There is a stair tool. Stairs are placed like objects, with some fancy mechanism indicating both levels at
once (TBD).

No floor may be placed on the level above any tile containing stairs.

There will be staircase sprites for ascending 2, 4, 6, and 8 altitude units. There will be landings of height 2,
4, and 6 altitude units. See 9.1.8.

9.2.9.2 Stairs and Failure States
Split-level homes and stairs present some problems. In the figures below, the top figure shows the
approach that must be taken to avoid a failure state when build stairs down to a lower split-level that
doesn’t have a level above it. The bottom figure shows that the stairs don’t have to cut in to the terrain if
there is a level above it; in that case, no floor tiles are allowed to be placed above the stair case.

TBD: How do we handle/prevent these failure states?

Confidential and Proprietary Information DRAFT 4 - Page 19
May not be reproduced or distributed without the express permission of Maxis, Inc. Printed 12/20/12, 11:57 AM

Stairs and Split Levels

9.2.10 Roofs
The roof is only visible when viewing the exterior of the house. The roof style may be changed by the user,
and TBD some roof styles may have control points which the user can drag to change the shape (angle, size
of eaves, etc.) of the roof.

TBD: Roofs may include chimneys, or chimneys may be distinct objects which poke through the roof.

TBD: There may be a “roof tool,” that uses the same “current style” paradigm, but lets the user place a roof
or a section of roof. A robust algorithm could allow different roof style over different parts of the house.

9.2.11 Gardens, Trees, and Flora
These are just objects, with sprite graphics. TBD how they are placed.

9.2.12 Fences, Rock Walls, and Railings
Fences rock walls, and railings (both inside and outside) are normal walls with appropriate graphics. They
are placed like normal walls. TBD: the code may limit the selection of wall styles depending on whether
the user is editing “inside the house” or “outside the house”.

TBD: What to do if the user puts down a fence then builds walls around it.

TBD: Currently there is only 1 room value indicating outside rooms. We will need a range of values for
this. I propose elsewhere that the high bit be used for this (see section 9.1.10).

Confidential and Proprietary Information DRAFT 4 - Page 20
May not be reproduced or distributed without the express permission of Maxis, Inc. Printed 12/20/12, 11:57 AM

9.2.13 Pools & Hot Tubs
These are normal objects, with z-sprites. Below-ground pools, however, will require a z-buffered terrain.

Hot tubs are objects, and are placed in the object editing mode. Pools are “dug” in architecture mode.

TBD: is there a special “pool” ground value (and smart terrain code to handle the shear correctly) to make
the pool aquamarine?

9.2.14 Streets, Curbs and Alleys
Streets will not be editable by the user. The streets will have a curb, also not editable by the user. TBD:
Some lots may have alleys, also not editable by the user.

TBD: Streets, curbs, and alleys will be represented by ground layer values, and rendered by the terrain
renderer.

9.2.15 Driveways & Sidewalks
The user may place driveways and sidewalks on their lot.

TBD: how to integrate sidewalks, driveways, and shear with route-finding

9.2.16 Grass
TBD: Grass is a ground type, rendered by the terrain renderer. It is editing using the landscape tool.

9.2.17 Water
The water tool is used to place or remove water from the world. The hydrology simulation will only run in
the architecture mode; placing water will run the simulation, and very quickly the water will reach a static
state.

The control key modifies the water tool to delete water.

9.2.18 Undo Mechanism
This section describes the design and justification for an Undo/Redo mechanism in Jefferson.

9.2.18.1 Why We Need Undo
The most compelling reason for including undo is the fact that many of the tool will have a large effect
(flooring an entire room, for instance), and accidental use of such a tool would be a big inconvenience.

Also, an Undo feature is the most requested feature in SimCity 2000 (I’ve heard...).

9.2.18.2 Design Goals
The main goals are that the undo design be simple, support both single- and multi-level undo and redo with
no penalty for either, and fit well with the architecture tools. Secondary goals are that it be suitable
elsewhere in the game if needed, and that it facilitate an undo user interface that is familiar to users and
similar to other undo mechanisms.

9.2.18.3 The Architecture Tools
The design focuses on undo for the architecture tools, enumerated above.

We purposefully omit object and person placement tools, and the hand tool. This is TBD, and may not
make sense.

9.2.18.4 Current Mouse Tool Implementation
The architecture tools are implemented through various subclasses of a cTool class. Each kind of cTool
object is created at init time, and swapped in as the "current tool" depending on the user's selections in the
tool palette. The cTool class provides, primarily, a Float/Click/Drag/Release paradigm for mouse

Confidential and Proprietary Information DRAFT 4 - Page 21
May not be reproduced or distributed without the express permission of Maxis, Inc. Printed 12/20/12, 11:57 AM

manipulations. Float moves the cursor around, and the tool itself is invoked by clicking the mouse,
dragging it appropriately, and releasing it. Once the mouse is released, the tool's action is done.

9.2.18.5 The cCommand Class
To implement undoability, we will use an abstract base class, cCommand, which declares the following,
approximate, interface:

 class cCommand
 {
 public:
 virtual void Commit() = NULL;
 virtual void Undo() = NULL;
 virtual void Redo() = NULL;

 // used to build Undo/Redo menu
 void GetMenuText(char *outMenuText);
 };

Each cTool object creates an instance of a cCommand subclass upon a call to cTool::Click. Each call to
cTool::Drag (as the mouse moves around) updates the state of the cCommand object with the changes the
cTool is making. When cTool::Release is called, it calls cCommand::Commit to put the object into an
Undoable state.

• cTool::Click - Creates (or gets from a factory) a fresh cCommand-subclass object.

• cTool::Drag - Updates cCommand object with data necessary to undo.

• cTool::Release - Commits cCommand object, forcing it into an Undoable state, and relinquishes
ownership of that object to a window- or application-wide "undo handling context" (TBD).

Once a command has been "committed," it can be undone, but not redone. After a command has been
undone, it can be redone, and so on.

9.2.18.6 Global Undo Handler
Once a cCommand is committed, it is put in an Undoable state and added to the front of a list of Undoable
commands. This list, and a list of Redoable commands, is managed by some window- or application-wide
"undo handler," whose precise location is TBD. If the user chooses Undo from a menu, the undo handler
responds by removing the front cCommand object from the Undoable list (right-most object on the left half
in the figure below), and calling its Undo() member function. This causes the cCommand object to make a
state transition from Undoable to Redoable. The undo handler then adds the cCommand object to the front
of its list of Redoable objects (left-most object on the right half in the figure below).

Confidential and Proprietary Information DRAFT 4 - Page 22
May not be reproduced or distributed without the express permission of Maxis, Inc. Printed 12/20/12, 11:57 AM

"Infinite Undo" obviously isn't feasible or probably even desirable. Thus we would most likely keep the
length of the Undoable list fairly short by deleting the object at the tail of a list when adding an object to its
head after it reaches a certain length.

9.2.18.7 Risks
 We may find that implementing Redo() in addition to Undo() either:

• Leads to greatly increased complexity in the cCommand objects; or

• Exhibits unacceptable hysteresis between Undone and Redone states of the world.

In either case, it would be appropriate (and trivial) to reduce the implementation so that it only "Undoes"
the very last command, and it can't Redo it. This is the "classic" undo mechanism.

Confidential and Proprietary Information DRAFT 4 - Page 23
May not be reproduced or distributed without the express permission of Maxis, Inc. Printed 12/20/12, 11:57 AM

9.3 Views
The goals of the Views subsystem are:

• To provide a comfortable view of the interior of the house, so that everything important in the game is
visible or can easily be made so.

• To provide a comfortable view of the exterior of the house, the yard, and at least the conveyance of a
neighborhood.

• To provide a mechanism for viewing the various levels of the house, both inside and outside.

• To facilitate the user easily viewing whatever details or features are of interest, both inside and outside
the house, on any level and at any zoom.

The game will have distinct interior/exterior views. The user will switch between these views using some
kind of UI element on the side panel.

9.3.1 Interior View
The interior view will be the best view to observe the goings-on inside the house. Exterior details will be
less prominent (though maybe still present). In particular, a dynamic scheme for keeping the active
character (or all the characters) visible will keep focus on the game play. Only one level at a time will be
fully rendered (TBD) in interior view.

9.3.1.1 Cutaway View
Some mechanism for “dynamic cutaways” will keep the active character or character visible through walls,
behind trees, and through terrain.

TBD: Precisely how this will work.

9.3.1.2 Ceilings
Ceilings will never be visible in the game. They exist conceptually, however: a given level has a ceiling
wherever the level above it has floor.

9.3.1.3 Multiple Floors
In Interior View, only the current “active” level and all floors below it will be visible. There will need to
be some mechanism for conveying the idea that levels above exist.

9.3.1.4 Attics
Any roof that isn’t flat suggests an attic. The game won’t have attics.

9.3.2 Exterior View
The exterior view will be the best view for observing the outside of the house: its roof, the yard, all its
levels, and probably the neighbors’ houses. The inside of the house will only be visible through windows
and doors.

9.3.2.1 Cutaway View
TBD: The exterior view will have a cutaway feature as well, but more limited. In exterior cutaway view,
only characters who are hidden by 1 (or 0) wall from the outside will be visible.

9.3.2.2 Roof
The roof will be visible only in exterior view, except that the roof on a lower level may be visible when the
interior view of an upper level (split-level) is active.

Confidential and Proprietary Information DRAFT 4 - Page 24
May not be reproduced or distributed without the express permission of Maxis, Inc. Printed 12/20/12, 11:57 AM

9.3.2.3 Outside walls
Outside walls will have appropriate patterns. As noted above (9.2.7), the outside of the house may have a
theme associated with it, in which case the “feel” of the house will be manifest in the appearance (pattern,
also style?) of the outside walls.

9.3.2.4 Yard
There won’t be a distinction between interior and exterior views of the yard.

9.3.2.5 Neighborhood
TBD: Some representation of the neighborhood will be displayed. Whether and how this is generated from
the actual neighborhood houses is unknown.

9.3.2.6 Apartment Buildings
We won’t allow “apartment building” houses, with no terrain. no terrain?

9.3.3 Thumbnail View
TBD.

Confidential and Proprietary Information DRAFT 4 - Page 25
May not be reproduced or distributed without the express permission of Maxis, Inc. Printed 12/20/12, 11:57 AM

9.4 Feng Shui Analysis
TBD.

